M.SL. Computer Science

Set No. 1

Ouestion Booklet No.

00631

16P/208/22

(To be	filled up by	the candidate	by blue/bl	lack ball-poi	nt pen)	
Roll No.						
Roll No. (Write the	digits in w	ords)		Cocle	N.	486)
Serial No. of OMR	Answer Sh	eet		·····		
Day and Date	***************************************	(3	-16		Signature	of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a Note that the answer once juled in the cumoi of such question wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover art the blank page at the end of this

- 13. You are not permitted to leave the Examination main until the limit of the lest.

 14. If a candidate attempts to use any form of unfair means, he/s shall be liable to such punishment as

[उपर्यु**क्त निर्देशन्दी** में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एफ कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: 2 Hours Full Marks: 450

समय : २ घण्टे पूर्णाङ्क : 450

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one. यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 01. A half adder is also known as:
 - (1) NOR circuit

(2) XNOR circuit

(3) NAND circuit

- (4) XOR circuit
- 02. Booth's algorithm is used for the arithmetic operation of:

(1) addition

(2) subtraction

(3) multiplication

- (4) division
- 03. The most relevant addressing mode to write position independent code is:

(1) direct mode

(2) auto mode

(3) relative mode

(4) indexed mode

04.	The smallest integer that can be represented by an 8-bit number in 2's complement form is:					
		-256	(2)	-128		
	\$3 1823	-127	(4)	0		
	(0)	127	(-)			
05.	Wha	t combination of the inputs a	JK f	lip-flop toggles ?		
	(1)	J=0, K=0	(2)	J=0, K=1		
	(3)	J=1, K=0	(4)	J=1, K=1		
		9		•		
06.			nplica	ants of the following Boolean		
	func	tion ?				
	D (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	,	b, c) = a'c + ac' + b'c	(0)	ala and blo		
		a'c and ac'		a'c and b'c		
	(3)	a'c only	(4)	ac' and bc'		
07.	If a s	student needs to choose 8 from	nd Q, m pa	each containing 10 questions. rt P and 4 from Part Q, in how		
	man	y ways can he do that?	(0)			
	(1)	1000	(2)	6020		
	(3)	1200	(4)	9450		
			·	d out of the letters of the word		
08.	How	many 3-letter words can be in RPORATION', if repetition of le	etters	d out of the letters of the word is not allowed?		
	COL	CPORATION, II Topoula				
		000	(2)	336		
	(1)	990	(2)	336		
	(1) (3)	990 720	(2) (4)	504		
09.	(3)	720	(4)	504 bask of 255,255,255,192. What		
09.	(3) A su is th	720 ubnet has been assigned a subnet maximum number of hosts	(4)	504 bask of 255,255,255,192. What		
09.	(3)	720	(4) net m	nask of 255.255.255.192. What can belong to this subnet?		

10	Which one of the following is NOT shared by the threads of the same process?					
	(1)	Stack		(2)	Address Space	
	(3)	File Descriptor T	`able	(4)	Message	
11.	tec roo sec	H key) between the hnique. They agre t. Party A chooses rets. Their D-H key	emselves usi e on 7 as th s 2 and par	ng th ne mo	h to setup a common secret key he Diffle-Hellman key exchange todulus and 3 as the primitive chooses 5 as their respective	
	(1)	3 (2)	4	(3)	5 (4) 6	
12.	X5	nsider the follow undancy check (CF X4+X2+1 is: 01110	ving messa C) for this m	ige Miessa	M=1010001101. The cyclic age using the divisor polynomial 01011	
	Dispersion	10101		(4)	10110	
13.	Whi (1) (2)	ch of the following Bridge is a layer Bridge reduces co	2 device	is F	ALSE regarding a bridge?	
	(3)				more LAN segments	
	(4)	Bridge reduces be				
14.	A channel has a bit rate of 4 kbps and one-way propagation delay of 20 ms. The channel uses stop and wait protocol. The transmission time of acknowledgement frame is negligible. To get a channel efficiency of at least 50%, the minimum frame size should be:					
	(1)	ou bytes			80 bits	
	(3)	160 bytes		(4)	160 bits	
					~ ·	

15.	In a depth-first traversal of a graph G with n vertices k edges are marked
	as tree edges. The number of connected components in G is:

(1) k

(2) k+1

(3) n-k-1

(4) n-k

16. Which of the following statements is TRUE about CSMA/CD?

- (1) IEEE 802.11 wireless LAN runs CSMA/CD protocol
- (2) Ethernet is not based on CSMA/CD protocol
- (3) CSMA/CD is not suitable for a high propagation delay network like satellite network
- (4) There is no contention in a CSMA/CD network

17. The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by:

- (1) the instruction set architecture
- (2) page size
- (3) physical memory size
- (4) number of processes in memory

18. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is:

- (1) 10, 8, 7, 5, 3, 2, 1
- (2) 10, 8, 7, 2, 3, 1, 5
- (3) 10, 8, 7, 1, 2, 3, 5
- (4) 10, 8, 7, 3, 2, 1, 5

P.T.O.

19). Su ha	Suppose the round trip propagation delay for a 10Mbps Ethernet having 48-bit jamming signal is 46.4 ms. The minimum frame size is:						
	(1)			, 6	(2		, minimum m	anne size is .
	(3)	464			(4			
20	bir no	the given of nary search de from the	rder : 10 tree (tl), 1, 3	, 5, 15, 1	2, 16. \	empty binary What is the h mum distan	eight of the
	(1)	2	(2)	3	(3)	4	(4)	6
21	21. The minimum number of 2-input NAND gates required to implement the function F= (X'+Y') (Z+W) is:							
	(1)	3	(2)	4	(3)	5	(4)	6
22	DCI	ore the tabl	e is 10%	for 10 full,	0 records. is :	Then the	he probability	of collision
	(1)	0.45			(2)	0.5		
	(3)	0.3			(4)	0.34	25	
23.	Hov	v many pul	ses are	neede	ed to char	age tha	contents of	
	cou	nter from 1	0101100	to Q	0100111	rightm	ost bit is the	a 8-bit up
	(1)	134			(2)	133	510 15 1110	LOD) ?
	(3)	124			(4)	123		
24.	A 10 in th (1)	00 Km long the cable is 2 572 772	cable ru /3 the s	ns at peed	the T1 da of light. H (2) (4)	ata rte. ow mar 672 872	The propoga	tion speed he cable ?
					_			

25.	The average search time of hashing, with linear probing will be less if the load factor:								
	(1)	is far less than one	(2)	equals one					
	(3)	is far greater than one,	(4)	is far greater than hundred					
26.	Bou	nded minimalization is a tech							
	(1)	proving whether a primitive computable or not	e re	cursive function is turning					
	(2)	(2) proving whether a primitive recursive function is a total function or not							
	(3)	generating primitive recursiv	e fun	actions					
	(4)	generating partial recursive f	unct	ions					
27.	page the	The address sequence generated by tracing a particular program executing in a pure demand paging system with 100 records per page, with a free main memory frame is recorded as follows. What is the number of page faults?							
	010	0, 0200, 0430, 0499, 0510, 05	30,0	0560, 0120, 0220, 0240, 0260,					
	032	0, 0370	(0)	8					
	(1)	13	(2) (4)	10					
	(3)	7	(+)	10					
28.	into	Consider a logical address space of 8 pages of 1024 words mapped into memory of 32 frames. How many bits are there in the logical							
		9 bits	(2)	13 bits					
	(1)	11 bits	(4)	15 bits					
	(3)	11 bito							

29.	. Co	nsider the join of a relation F	R with	a relation S. If R has m tuples				
		and has n tuples, then the maximum and minimum sizes of the join						
		respectively are:						
	(1)	m+n and 0	(2)	mn and 0				
	(3)	m+n and m-n	(4)	mn and m+n				
20	****							
30.	Wh	at is the minimum number	of tv	vo-input NAND gates used to				
		form the function of two inpu	at OR	gate ?				
	(1)	one	(2)	two				
	(3)	three .	(4)	four				
31.	Wh	ich of the following is a natur	14	1 0				
01.		ich of the following is a netwo	ork to	pology ?				
	(1)	LAN	(2)	WAN				
	(3)	MAN	(4)	BUS				
32.	Wha	at is embedded system?						
	(1)	The programme which arriv	es hu	haina wwanu ad ia 1				
	(2)							
				nanent part of the computer				
	(3)	The computer which is the		100 mg/s				
	(4)	The computer and software	syster	n that control the machine				
33.	A pe	rson who used his or har arm						
	com	puters to get information ille	coller o	to gain access to other people's				
			gany (or do damage is :				
	(1)	Hacker	(2)	spammer				
	(3)	instant messenger	(4)	programmer				
		1.4						

34.	ASC	II is a coding system that pro	ovides	:
	(1)	256 different characters	(2)	512 different characters
	(3)	1024 different characters	(4)	128 different characters
35.	The	D-flip-flop captures the value	e of th	e input D when there is a :
00	(1)	Positive edge	(2)	Rising edge
	(3)	Negative edge	(4)	Non-rising edge
36.	A+B	.C= (A+B) (A+C) is an examp	le of :	
	(1)	Involution	(2)	Commutative
	(3)	Distributive	(4)	Absorption
37.	9876	55 in decimal is in h	exadeo	cimal :
	(1)	1C81D	(2)	C181D
	(3)	181CD	(4)	CD181
38.	The is:	scheduling policy that has lo	ng wa	iting times for small processes
	(1)	SJF	(2)	Round Robin
	(3)	FCFS	(4)	FJS
39.	The	part of UNIX that contains all	modul	les necessary for the processes, anagement is:
	(1)	Kernel	(2)	Shell
	(3)	Files	(4)	Processes
40.		operation in which the CPU operation is:	waits	for a device to be ready for an
	(1)	Buffering	(2)	Spooling
	(3)	Polling	(4)	DMA

			x .		
4	1. T	he	type of high-level language	that	uses predicate logic is:
		l)	Unstructured		Procedure oriented
	(3	3)	Logic oriented	(4	Object oriented
42	2. Ti		most important schema for Physical schema		
	(3			(3)) Logical Schema
	O)	,	Conceptual Schema	(4) External Schema
43	. Da	ata	compression is the respons	sibilit	ty of :
	(1)		Session	(2)	
	(3)		Presentation	(4)	
	(1)	e fo	actor that considers varying Minimum number of hops Transmission delay orm of computing utilized by Distributed P2P	(2) (4)	Queuing delays Propagation delay
46.	Blu	eto	ooth devices transmit very w	eak s	signals of about :
	(1)	1	milliwatt	(2)	2 milliwatts
	(3)	3	milliwatts	(4)	4 milliwatts

47.	The technique that allows hackers to illegally and remotely access a							
	user's phone is :							
	(1)	Bluejacking	(2)	Bluebugging				
	(3)	Car whisperer	(4)	Messenger				
48.	Of t	he following, a 5GL is :						
	(1)	Prolog	(2)	Java				
	(3)	OPSS	(4)	Pascal				
49.	Whi	ch operator has lowest preced	ence	?				
	(1)	Sizeof	(2)	Unary				
	(3)	Assignment	(4)	Comma				
50.	Whi (1) (3)	ch among the following is a LI Stacks Trees	FO d (2) (4)	lata structure ? Linked lists Graphs				
51.		izeof (arr[3]) ?	(3)	5, 7, 9); then what is the value 3 (4) 8				
	(1) (3)	ich open addressing technique Linear probing Double hashing	(2) (4)	Rehashing				
53.	4	TCP, UDP, UDP and TCP	(2)	for real time multimedia, file are: UDP, TCP, TCP and UDP TCP, UDP, TCP and UDP				

54.	the	Which one of the following is the tightest upper bound that represents the time complexity of inserting an object into a binary search tree of n nodes?					
	(1)	O (1)	(2)	O (log n)			
	(3)	O (n)	(4)	O(n lon n)			
55.	15, trav (1) (2)	25, 23, 39, 35, 42. Which onversal sequence of the same tree 10, 20, 15, 23, 25, 35, 42, 39, 15, 10, 25, 23, 20, 42, 35, 39	e of ee? 0,30	nary search tree is 30, 20, 10, the following is the postorder			
	(3)	15, 20, 10, 23, 25, 42, 35, 39	, 30				
	(4)	15, 10, 23, 25, 20, 35, 42, 39	, 30				
56.	Pari	ity check is method of:					
	(1)	Transmission control	(2)	Error control			
	(3)	Encryption	(4)	Decryption			
57	The	amount of DOM and date					
٠		amount of ROM needed to im	1200000				
	(1)	64 bits	(2)	128 bits			
	(3)	1 Kbits	(4)	2 Kbits			
58.	Give INC	en the basic ER and relational ORRECT?	mod	lels, which of the following in			
	(1)	An attribute of an entity can l	have	more than one volve			
	(2)	An attribute of an entity can	be co	mposite			
	(3)	In a row of a relational table, one value	an a	attribute can have more than			
	(4)	In a row of a relational table, value or a NULL value	an ai	ttribute can have exactly one			

59.	Standard FTP uses reserved port(s):							
	(1)	20			(2)	25		
	(3)	20 & 21			(4)	25 & 23		
60.	Whi	ch of the follo	wing	is TRUE ?				
	(1)	Every relatio	n is 3	NF is also	in BC	NF		
	(2)	A relation R functionally				n-prime attrib key of R	ute o	or R is fully
	(3)	Every relatio	n in l	BCNF is al	so in 3	BNF		
	(4)	No relation of	an b	e in both E	BCNF a	and 3NF		
61.	The	addressing n	node	used in an	instru	action of the fo	orm <i>l</i>	ADD X Y, is
	(1)	Absolute			(2)	Indirect		
	(3)	Index			(4)	Direct		
62.	In a		pped	I/O system	m, wh	ich of the follo	wing	will not be
	(1)	LDA	(2)	IN	(3)	ADD	(4)	OUT
63.	Wri data		chnic	que is used	d in w	hich memory	for u	pdating the
		Virtual mem	orv		(2)	Main memor	У	
	(3)	Auxiliary m		у	(4)	Cache memo	ory	
64.	A fl	oating point r	numb	er that has	s a O i	n the MSB for	man	tissa is said
		nave:			9/			
	(1)	Overflow			(2)	1		
	(3)	Important i	numb	er	(4)	Undefined		
								;*
	` 14							

			,
65	 The instructions which copy either in the processor's inte memory are called: 	informat ernal regi	ion from one location to another ster set or in the external main
	 Data transfer instruction Input-output instruction 	_,	8 min cond of mist actions
66.	What is the content of Stack (1) Address of the current in (2) Address of the next instr (3) Address of the top eleme (4) Size of the stack	n <mark>structio</mark> ruction	n
67.	Which symbol is used to enclo	ose HTM (3)	
(Inheritance makes it easier to (1) reuse and modify existing (2) write and read code by sh (3) hide and protect data from (4) Both [1] and [2]	module	ethod no
((3 (4	A derived class inherits son A derived class inherits all A derived class inherits all That is the maximum time that atternet without finding a destir 255 seconds	ne of the of the production?	operties of a base class.

W2.1577521			T	univalent to '
71.		ple relational calculus $P_1 \rightarrow P_2$		
	(1)	$-P_1 \vee P_2$	3051 1801	$P_1 \vee P_2$
	(3)	$P_1 \wedge P_2$	(4)	$P_1 \wedge \neg P_2$
72.	The runr	minimum number of page fra ning process in a virtual memo	ry er	that must be allocated to a vironment is determined by:
	(1)	The instruction set architectu	ire	
	(2)	Page size		
	(3)	Physical memory size		
	(4)	Number of processes in mem	ory	
			- 11 -	, , , , , , , , , , , , , , , , , , ,
73.	In d	atabases, Locking level is also		Q as .
	(1)	Gramulority	(2)	S lock
	(3)	X lock	(4)	Dead lock
		tion can be n	erfor	med through :
74.	. In (c, masking operation can be p	(2)	XOR bitwise operator
	(1)	AND bitwise operator	(4)	-1.16
	(3)		•	
		of the semaphore	that	allows only one of the many
75	. Ini	ocesses to enter their critical s	ection	()
		(2) 1	(3)	16 (4) 0
	(1)	O .	270.220	a:ivalent to:
17	s In	SQL the statement select * from	m R,	S is equivalent to.
11		Select * from R Hatural John	υ.	
	(1	salest * from R cross join S		
	(2	from R union join	5.	
	(3	Select * from R inner join S	3.	
	('	4) Select M		
		_		

		Production								
	(2	(2) avoid unnecessary wastage of storage space								
	(3) avoid unauthorized access to data									
	(4	avoid inconsister	s to d	ata						
	•) avoid inconsistency amor	ig dat	a						
7	th (1)	die is thrown. Let A be the eater than 3. Let B be the ean 5. Then P (A D B) is: 3/5	(2	that the number obtained in that the number obtained is less 2) 0 3) 5/2	is s					
_										
7	9. Th	e statement $p \rightarrow (q \rightarrow p)$ is equ	ivale	nt to .						
	(1)	$p \rightarrow (p \rightarrow q)$								
			(2	$p \to (p \square q)$						
	(3)	$p \rightarrow (p \square q)$	(4)	$p \to (p \leftrightarrow q)$						
80	O. Rel	ational calculus is a :								
	(1)	Procedural language Data definition language	(2) (4)	110ccuural language						
81	. DM	L is provided for :		and a second						
	(1) (2) (3) (4)	Description of logical struct Addition of new structures i Manipulation & processing of Definition of physical structures	in the of data ure of	database system. abase.						
82.	A rela $X \rightarrow Y$	ation R (X, Y, Z, W) with functing and $Y \rightarrow X$ is in:	onal d	dependencies $XZ \rightarrow W$, $YZ \rightarrow W$,						
	(1)	1 NF only								
	(3)	3 NF only	99951850	2 NF only						
			(4)	BCNF						

77. Controlling redundancy in a database management system DOES

(1) avoid duplication

83.	83. In which type of switching all the datagrams of a message follow the same channel:							
	(1)	Circuit-switching						
	(2)	Datagram packet switching						
	(3)	Virtual circuit packet switching	ng					
	(4)	Message switching						
84.	Verif	fication of a login name and pa	asswo	ord in known as :				
	(1)	Configuration	(2)	Accessibility				
25	(3)	Authentication	(4) om, t	logging in he portion lebelled http is the :				
00.	(1)	host	(2)	domain name				
	(3)	protocol	(4)	top-level domain				
86.	Whi	ch one of the following is not a b	road	band communication medium?				
	(1)	Microwave	(2)	Fibre optic cable				
	(3)	Twisted pair	(4)	Coaxial cable				
87.	87. The altering of data so that it is not usable unless the changes are							
	und	lone is:	(0)	Compression				
	(1)	Biometrics	(2)	Ergonomics				
	(3)	Encryption	(4)	Figoromes				
88	. The	e purpose of the primary key is	n a d	atabase is to:				
	(1)	unlock the database						
	(2)	provide a map of the data						
		· lontify a record		- motion a				
	(3)	blish constraints on day	tabas	se operations.				
	(4) Establish						
		1	8					

89.	Given two sorted list of size m and n respectively. The number of comparisons needed in the worst case by the merge sort algorithm will be:							
	(1) m x n(3) minimum of m, n	(2) maximum of m, n(4) m+n-1						
,	(1) semaphores (3) critical section	(2) directory(4) mutual exclusion						
91. (Maximum possible height of an A	AVL tree with 7 nodes is: (3) 5 (4) 6						
(1) FIFO (2) LRU	(3) LFU (4) NRU It strategies a program is placed in						
(3) worst fit	(2) first fit (4) buddy						
94. Pa (1) (2) (3) (4)	the page is in main memory the page is not in main memory	rv .						

) (the probability of occurrence of a continuous of the probability of the prob	(2) 0.93(4) 0.07
(5,000 frames per minute with 6,000 bits. What is the throughp 1) 2 Mbps 3) 120 Mbps	(2) 60 Mbps (4) 10 Mbps
j	f there are n integers to sort, each in the set {1, 2,, k}, radix so 1) O (d n k) 3) O ((d+n)k)	sort can sort the number in: (2) O (d n ^k) (4) O(d(n+k))
	In Propositional Logic, given P a (1) ~Q (3) P□Q	(2) Q (4) ~P□Q
99.	people table): (a) Select Name from people v (b) Select Name from people v (c) Select Name from people v If the SQL queries (a) and	where Height>180; where (Age>21) or (Height>180); (b) above, return 10 rows and 7 rows

100. T	he number of 1	's pr	esent in th	ne bir	nary represent	ation	of
1	0×256+5×16+5	io					
) 5	(2)	6	(3)	7	(4)	8
101. T	ne hexadecimal	num	her equivo	lont t	to (1760 46) :		
(1) 3F2.89	II CIII	ber equiva			s:	
) 2F3.89			(2)			
	,			(4)	2F3.98		
102.8-	102.8-bit 1's complement form of -77.25 is:						
(1		100	, , ,			010	
(3	10110010.10				01001101.0		
				(4)	10110010.1	101	
103.Th	103. The number of different trees with 8 nodes is:						
(1)	256	(2)	255	(3)		(4)	050
104 01						(4)	250
104. Gi	ven a binary tre	e who	ose inorder	and	preorder trave	rsala	are given by
	order : EICFBG						are given by
1110	nuci . Elchbu.	DOHK	L				
Pre	order : BCEIFI	OGH.J	K				
The	post order tra	versa	l of the abo	ove b	inary tree is .		
(-)	TEL COOKUDE	3	1	(2)	IEFCJGKHD	D	
(3)	IEFCGKJHDE	3		(4)	IEFCGJKDBI		
105. Dat	2 wordhare			,	GOLDDI	1	2
(1)	a warehousing	refer	s to :				
(2)	storing data o	iiine	at a separ	ate s	ite		
(3)	backing up da	ita re	gularly				
(4)	is related to di	ata m	uning				
(')	uses tape as o	ppose	ed to disk				

106.	(101 (1)	011) ₂ =(53) _b , t	hen b (2)		(3)	10	(4)	16
107	Mul (1) (3)	ti-valued depo 2 NF 4 NF	enden	acy among a	ettribi (2) (4)	ate is checked 3 NF 5 NF	at w	hich level ?
108	(1)	e postfix form (A-(B+C))*D ((A+B)-C)*D	n of a	string is Al	(2)	0*, the actual ((A-B)+C)*D (A+(B-C))*D	strinį	g is:
109	(1)	example of a xvy xv (~x)	tauto	logy is :	(2) ⁻ (4)	xv(~y) (x=>y) □ (x<	:=y)	
110	.Cor	nsider the foll	owing	g C code:				
	{ in	nt a=5, b=9;		•				
	flo	oatr;						
	r=	b/a;}						
	(1)	at is the valu	(2)	1.0	(3)		(4)	0.0
11	1. Fu (1) (2) (3)	a function function. a function possibly d	is use	alled too I	many on in	number of t	user	to carry out

112. V	Which of the following set of keyw	ords c	onstitutes a manning in SOL 2					
() SELECT, FROM, TABLE	(2)	SELECT, FROM, WHERE					
(3	B) CONNECT, TABLE, CREATE	(4)	SELECT, TABLE, INSERT					
113. W	hich one of the following senter	ices is	true ?					
(1								
(2) The body of a do while loo	The body of a do while loop is executed at least once.						
(3	The body of a do while loop is executed zero or more times							
(4	(4) A for loop can never be used in place of a while loop.							
114. Th	ne baud rate is:	÷						
(1)								
(2)	equal to twice the bondarias	er rate						
(3)	1 so twice the bandwidth	oi an	ideal channel					
(4)	and to the signating rate							
()	equal to half of the bandwidth	of an	ideal channel					
	referenced in the order 012301 total number of page faults wit	14012; h FIF(34 mith 11.					
, ,	(2) 4 ,	(3) 6	(4) 9					
116. The	following loop in 'C':							
	=0;							
Whi	le (i++<0) i;		2 20					
(1)	will terminate		•					
(3)) wi	l go into an infinite loop					
,,	will give compilation error (4)) wil	I never be executed					
			- July					

- 117. What is the function of a translating bridge?
 - (1) Connect similar remote LANs
 - (2) Connect similar local LANs[3]
 - (3) Connect different types of LANs
 - (4) Translate the network addresses into a layer 2 address
- 118. The memory allocation scheme subjected to "external" fragmentation is:
 - (1) Segmentation
 - (2) Swapping
 - (3) Demand paging
 - (4) Multiple contiguous fixed partition
- 119.Bluetooth technology uses the transmission media:
 - (1) Radio links

- (2) Microwave links
- (3) VSAT communication
- (4) Optical fiber links
- 120. Which of the following differentiates between overloaded functions and overridden functions?
 - (1) Overloading is a dynamic of runtime binding and overridden is a static or compile time binding.
 - (2) Overloading is a static or compile time binding and overriding is dynamic or runtime binding.
 - (3) Redefining a function in a friend class is called overloading, while redefining a function in a derived class is called as overridden function.
 - (4) Redefining a function in a derived class is called function overloading, while redefining a function in a friend class is called function overriding.

121. A trigger is?

- (1) A statement that enables to start any DBMS
- (2) A statement that is executed by the user when debugging an application program
- (3) A condition the system tests for the validity of the database user.
- (4) A statement that is executed automatically by the system as a side effect to modification to the database.

122. A deadlock exists in the system if and only if the wait-for graph contains

(1) Cycle

(2) Direction

(3) Bi-direction

(4) Rotation

123. What is purpose of abstract class?

- (1) to provide help with database connectivity.
- (2) to provide data data input to other classes.
- (3) to provide security to other classes.
- (4) to provide an appropriate base class from which other classes

124. The algorithm, which may suffer from cascading roll back, is:

- 2 phase locking Protocol
- (2) Strictly two phase locking Protocol
- Strictly two phase (3)
- Time stamp ordering Protocol (4)

125. Networking of libraries through electronic media is known as:

(2) Libinfnet

(3) Internet

(4) HTML

(1) (3)	yber crimes: The computer is a tool Both (1) and (2)	(2) (4)			
(1) (3)	32, Norton and Panda a Search engines Antivirus software	(2)			
(1) (3) (4)	at is a blog? Online music is a website, where you a personal or corporate	e Google s	aff on an ongoing basis search		
129. Its via (1)	main purpose is to prohil the Internet : popup blocker spyware blocker	bit unauth (2) (4)			
130.Information Communication Technology (ICT) involves primarily: (1) Enrichment of existing knowledge (2) Installation of equipments (3) Storage and communication of information (4) Use of technology for teaching 131. How many distinct binary search trees can be carried out of 4 distinct					
1 31. Ho	ow many distinct binary s	search tree	es can be carried out of		
ke	ys? 5 (2) 14	(3	3) 24 (4) 42		
132. W	hich of the following sor ase and best case completed Quick sort Heap sort	(rithm has almost the same worst (2) Merge sort (4) Shell sort		

133. In an empty circular queu	the front and room
(1) -1, -1	
(3) 0, 1	
	(4) 1, 1
134. If $\log 2 = 0.3010$ and $\log 3$	= 0.4771, then the value of log 5 is:
	(2) 0.6990
(3) 0.3010	(4) 1.6990
135. Complete binary tree can l	be implemented by making use of:
(1) array	or implemented by making use of :
(3) priority queue	(2) dequeue
	(4) stack
136. A digital signature is used	to provide security makes use of
o - J ceanned sign	allire
(2) A unique ASCII code n	lumber of the second
the rest of the cheryption	of the sender
(4) Public key encryption	
137.XML uses :	
(1) User-defined tags	(0)
(3) extensible tags	(2) pre-defined tags
™	(4) pairing tags
given by:	ithm T(n), where n is the input size is
	15
T(n) = T(n-1) + 1/n, if $n>1$	*
= 1, otherwise	3
The order of this algorithm is	
(1) log n	
$(3) n^2$	(2) n
	$(4) n^n$
	2

139. An	Exception	is	another	name	for	
----------------	-----------	----	---------	------	-----	--

(1) compile error

(2) logic error

(3) runtime error

- (4) syntax error
- 140. The methodology where code is broken into small, logical procedures is called:
 - (1) event-driven programming
- (2) functional programming
- (3) granular programming
- (4) modular programming

141. A Session variable is created:

- (1) when the application is first placed on a web server
- (2) when the web server is first started.
- (3) when the first client requests a URL resource
- (4) every time a new client interacts with the web application
- 142. The address of a class B host is to be split into subnets with a 6-bit subnet number. What is the maximum number of subnets and the maximum number of hosts in each subnet?
 - (1) 62 subnets and 262142 hosts
 - (2) 64 subnets and 262142 hosts
 - (3) 62 subnets and 1022 hosts
 - (4) 64 subnets and 1024 hosts

143. A relation over the set $S = \{x, y, z\}$ is defined by:
$\{(x,x), (x, y), (y, x), (x, z), (y, z), (y, y), (z, z)\}$ what properties hold for this relation?
I. Symmetric II. Reflexive III. Antisymmetric IV. Irreflexive (1) I only (2) II only (3) I and II only (4) I and IV only
144. What is the relation R on the set A= {a, b, c} if whenever a R b and b R c, then a R c? (1) transitive (2) equivalence
(4) symmetric 145. In the set of integers, a relation R is defined as aRb, if and only if b=
(1) reflexive (2) irreflexive (3) symmetric (4) anti-symmetric
146.A group has 11 elements. The number of proper sub-group it can
(1) 0 (2) 11 (3) 5
147. A graph consisting of only isolated n vertices is: (1) 1-chromatic (2) 2-chromatic (3) 3-chromatic (4) n-chromatic
(1) 984.12.787.76 valid IP address?
(3) 1.888.234.3456 (2) 192.168.321.10 (4) 192.168.56.115

149. The time taken by Internet packets:

- (1) can be predetermined before transmission
- (2) depends upon the size of packet
- (3) is irrelevant for audio packets
- (4) is irrelevant for video packets

150. Disk I/O is measured in terms of:

(1) Blocks

(2) Bits

(3) Sectors

(4) Tracks

ROUGH WORK रफ़ कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्घारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य
 - 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ
 - 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
 - 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
 - 14. यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।